Mitochondrial calcium overload triggers complement-dependent superoxide-mediated programmed cell death in Trypanosoma cruzi.

نویسندگان

  • Florencia Irigoín
  • Natalia M Inada
  • Mariana P Fernandes
  • Lucía Piacenza
  • Fernanda R Gadelha
  • Anibal E Vercesi
  • Rafael Radi
چکیده

The epimastigote stage of Trypanosoma cruzi undergoes PCD (programmed cell death) when exposed to FHS (fresh human serum). Although it has been known for over 30 years that complement is responsible for FHS-induced death, the link between complement activation and triggering of PCD has not been established. We have previously shown that the mitochondrion participates in the orchestration of PCD in this model. Several changes in mitochondrial function were described, and in particular it was shown that mitochondrion-derived O(2)(*-) (superoxide radical) is necessary for PCD. In the present study, we establish mitochondrial Ca(2+) overload as the link between complement deposition and the observed changes in mitochondrial physiology and the triggering of PCD. We show that complement activation ends with the assembly of the MAC (membrane attack complex), which allows influx of Ca(2+) and release of respiratory substrates to the medium. Direct consequences of these events are accumulation of Ca(2+) in the mitochondrion and decrease in cell respiration. Mitochondrial Ca(2+) causes partial dissipation of the inner membrane potential and consequent mitochondrial uncoupling. Moreover, we provide evidence that mitochondrial Ca(2+) overload is responsible for the increased O(2)(*-) production, and that if cytosolic Ca(2+) rise is not accompanied by the accumulation of the cation in the mitochondrion and consequent production of O(2)(*-), epimastigotes die by necrosis instead of PCD. Thus our results suggest a model in which MAC assembly on the parasite surface allows Ca(2+) entry and its accumulation in the mitochondrion, leading to O(2)(*-) production, which in turn constitutes a PCD signal.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression.

Trypanosoma cruzi undergo PCD (programmed cell death) under appropriate stimuli, the mechanisms of which remain to be established. In the present study, we show that stimulation of PCD in T. cruzi epimastigotes by FHS (fresh human serum) results in rapid (<1 h) externalization of phosphatidylserine and depletion of the low molecular mass thiols dihydrotrypanothione and glutathione. Concomitantl...

متن کامل

Trypanosoma cruzi Response to Sterol Biosynthesis Inhibitors: Morphophysiological Alterations Leading to Cell Death

The protozoan parasite Trypanosoma cruzi displays similarities to fungi in terms of its sterol lipid biosynthesis, as ergosterol and other 24-alkylated sterols are its principal endogenous sterols. The sterol pathway is thus a potential drug target for the treatment of Chagas disease. We describe here a comparative study of the growth inhibition, ultrastructural and physiological changes leadin...

متن کامل

Programmed cell death in Trypanosoma cruzi induced by Bothrops jararaca venom.

Cells die through a programmed process or accidental death, know as apoptosis or necrosis, respectively. Bothrops jararaca is a snake whose venom inhibits the growth of Trypanosoma cruzi epimastigote forms causing mitochondrion swelling and cell death. The aim of the present work was to determine the type of death induced in epimastigotes of T. cruzi by this venom. Parasite growth was inhibited...

متن کامل

Trypanosoma cruzi Cell Death Induced by the Morita-Baylis-Hillman Adduct 3-Hydroxy-2-Methylene-3-(4-Nitrophenylpropanenitrile)

Chagas disease, caused by the protozoan Trypanosoma cruzi, remains a serious health concern due to the lack of effective vaccines or satisfactory treatment. In the search for new compounds against this neglected disease, we have previously demonstrated that the compound 3-Hydroxy-2-methylene-3-(4-nitrophenylpropanenitrile) (MBHA3), derived from the Morita-Baylis-Hillman reaction, effectively ca...

متن کامل

Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells.

Malignant gliomas are resistant to various proapoptotic therapies, such as radiotherapy and conventional chemotherapy. In this study, we show that selenite is preferentially cytotoxic to various human glioma cells over normal astrocytes via autophagic cell death. Overexpression of Akt, survivin, XIAP, Bcl-2, or Bcl-xL failed to block selenite-induced cell death, suggesting that selenite treatme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 418 3  شماره 

صفحات  -

تاریخ انتشار 2009